
Miscellaneous Calculus Problems 

1. (a) Let  f(x)  be a continuous real-valued function on  [0, 1]. Prove that       
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5. (a) Evaluate   (i)   (ii)  ∫ dx)x(''fx ∫ dx)x2('f

 (b) In each of the following cases, find  f(x) : 
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6. Estimate the values of the following integrals using the second mean-value theorem: 
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7. For any real number  p ≥ 1  and  q ≥ 1 , define   B(p , q) = . dx)x1(x 1q1p
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 (b) Show that 
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8. Let  a, b  be real numbers such that  a < b  and let  m , n  be positive integers. 
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 (b) By integrating both sides of  (*)  with respect to  x , or otherwise, calculate 
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9. The function  f(x)  is periodic with period  π  and is integrable over the closed interval  [0, π] . 
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10. It is given that  f(x)  is continuous and positive for all  x , and  y  is defined by the equation 

  
∫
∫
+

+
= x

0

x

0

dt)t(fb

dt)t(fta
y   , where  a  and  b  are constants. 

 If  0
dx
dy

=   when  x = X  and  y = Y ,  show that  X = Y . 

11. Prove that  [ ] [ ] dx)x(fdx)x(fdx)x(f)x(f 2
2

b

a

2
1

b

a
21

b

a ∫∫∫ ≤  

 (Hint :  Consider    ) [ ] 0dx)x(tf)x(f 2
21

b

a
≥−∫

12. Prove that  22
0

xx4
1

e2dxee2
2

≤≤ ∫ −−
 . 

 2



13. The functions  F : R → R  and  G : R → R  are defined by 
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 (a) Show that  F(nπ)  and  G(nπ)  are zero for any integer  n , that both  F  and  G  are periodic and  

  that  both  F  and  G  are odd functions. 
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 (d) Sketch on separate diagrams the graphs of  F(α)  and  G(α)  for  –2π ≤ α ≤ 3π . 
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 Sketch the graph  y = f(x)  for values of  x  from  -2  to  2 . 
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16. (a) Show that, for all  t > 0 , x > 0 , the gradient of the graph of  
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1
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17. Suppose  f  is a twice differentiable function with  f ′′(x) < 0  for all  x > 0 .   

Show that if  0 < a < b   then   f ( λa + (1 – λ)b ) ≥ λf(a) + (1 – λ) f(b)   for all  1 ≥ λ ≥ 0. 
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19. If  n  is a positive integer and  x  is a positive variable, show by differentiation that  
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20. In the following we shall denote the  n-th  derivative  
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22. If  f  satisfies the functional equation  f(xy) = f(x) + f(y)  … (1) 

 for all  x , y  in its domain .  Show that if  f  is a solution of  (1)  and if  f  is differentiable at each  

  x ≠ 0,  then  
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23. For any real numbers  α < β , we denote 

 (α, β) = { x : x ∈   and  α < x < β }  ,  (α, ∞) = { x : x ∈  and   x > α } 

 (a) Define a function  h(x)  on  (1, ∞)  by  
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 (c) Using  (a)  and  (b) , deduce that if   1 < a < b < e , then  ab < ba . 
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