Miscellaneous Calculus Problems

1. (a) Let f(x) be a continuous real-valued function on [0, 1]. Prove that

$$\int_0^{\pi} x f(\sin x) dx = \frac{\pi}{2} \int_0^{\pi} f(\sin x) dx .$$

(b) Evaluate
$$\int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx$$
.
(c) Let $g(x) = \frac{\sqrt{1 + \cos x}}{\sqrt{1 + \cos x} + \sqrt{1 - \cos x}}$. Show that on $[0, \pi]$, $g'(x) = -\frac{1}{2(1 + \sin x)}$.

Hence, using (a) or otherwise, evaluate $\int_0^{\pi} g(x) dx$.

2. Prove that the *n*th derivative of the function y/x is

$$(-1)^{n} \frac{n!}{x^{n+1}} \left(y - x \frac{dy}{dx} + \frac{x^{2}}{2!} \frac{d^{2}y}{dx^{2}} - \frac{x^{3}}{3!} \frac{d^{3}y}{dx^{3}} + \dots + (-1)^{n} \frac{x^{n}}{n!} \frac{d^{n}y}{dx^{n}} \right), \text{ where } y \text{ is any function of } x.$$
Prove that $\frac{d^{n}}{dx^{n}} \left(\frac{e^{-x}}{x} \right) = \frac{(-1)^{n}}{x^{n+1}} \left(n! - \int_{0}^{x} t^{n} e^{-t} dt \right) .$

3. (a) Show that
$$\sin \frac{\pi}{n} \sin \frac{2\pi}{n} \dots \sin \frac{(n-1)\pi}{n} = \frac{n}{2^{n-1}}$$

(**b**) Hence or otherwise show that $\int_{0}^{\pi/2} \ln \sin x dx = -\frac{\pi}{2} \ln 2.$

4. (a) Prove that
$$a^{2n} - 1 = (a^2 - 1) \prod_{r=1}^{n-1} (1 - 2a\cos\frac{r\pi}{n} + a^2)$$
.
(b) Hence or otherwise show that $\int_0^{\pi} \ln(1 - 2a\cos x + a^2) dx = \begin{cases} \pi \ln a^2 & , a^2 > 1 \\ 0 & , a^2 < 1 \end{cases}$

- **5.** (a) Evaluate (i) $\int x f''(x) dx$ (ii) $\int f'(2x) dx$
 - (b) In each of the following cases, find f(x):

(i)
$$f'(x^2) = \frac{1}{x}$$
 (x > 0) (ii) $f'(\sin^2 x) = \cos^2 x$ (iii) $f'(\ln x) = \begin{cases} 1 & 0 \le x \le 1 \\ x & 1 < x < +\infty \end{cases}$ and $f(0) = 0$

6. Estimate the values of the following integrals using the second mean-value theorem:

(a)
$$\int_{4}^{9} \frac{dx}{(2+\sqrt{x})^{2}}$$
 (b) $\int_{0}^{\pi/4} \sqrt{1+\sin^{4}\theta} d\theta$ (c) $\int_{\pi/3}^{\pi} \frac{xdx}{1+\cos^{2}x}$
(d) $\int_{0}^{\pi/2} x\sqrt{\sin x} dx$ (e) $\int_{0}^{1} x^{\frac{1}{4}} e^{-x} dx$

7. For any real number $p \ge 1$ and $q \ge 1$, define $B(p, q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx$.

(a) Show that B(p, q) = B(q, p).

(b) Show that

(i) if
$$p \ge 1$$
 and $q \ge 2$, then $B(p, q) = \frac{q-1}{p+q-1}B(p, q-1)$.
(ii) if $p \ge 2$ and $q \ge 1$, then $B(p, q) = \frac{p-1}{p+q-1}B(p-1, q)$.

(c) Show that if $p \ge 1$ and $q \ge 1$, and $p \ge m > 0$, then $\int_0^1 x^{p-1} (1-x^m)^{q-1} dx = \frac{1}{m} B\left(\frac{p}{m}, q\right)$.

- 8. Let a, b be real numbers such that a < b and let m, n be positive integers.
 - (a) If for all real numbers x, u, $[(1+u)x (au+b)]^{m+n} = \sum_{k=0}^{m+n} A_k(x)u^k \dots (*)$ Show that $A_k(x) = C_k^{m+n}(x-a)^k(x-b)^{m+n-k}$ for $k = 0, 1, \dots, m+n$, where C_k^{m+n} is the coefficient of t^k in the expansion of $(1+t)^{m+n}$.
 - (b) By integrating both sides of (*) with respect to x, or otherwise, calculate

$$\int_{a}^{b} (x-a)^{m} (x-b)^{n} dx$$

(c) By differentiating both sides of (*) with respect to x, or otherwise, find

$$\frac{d^{r}}{dx^{r}}\left\{(x-a)^{m}(x-b)^{n}\right\} \text{ at } x=a \text{ , where } r \text{ is a positive integer.}$$

9. The function f(x) is periodic with period π and is integrable over the closed interval $[0, \pi]$. Prove that $\int_{n\pi}^{(n+1)\pi} e^{-ax} f(x) dx = e^{-an\pi} \int_{0}^{\pi} e^{-ax} f(x) dx$ and deduce that

$$\int_{0}^{\infty} e^{-ax} f(x) dx = \frac{e^{a\pi}}{e^{a\pi} - 1} \int_{0}^{\pi} e^{-ax} f(x) dx .$$

10. It is given that f(x) is continuous and positive for all x, and y is defined by the equation $v = \frac{a + \int_0^x t f(t) dt}{2}$, where a and b are constants.

$$y = \frac{1}{b + \int_0^x f(t) dt}$$
, where a and b are constants

If
$$\frac{dy}{dx} = 0$$
 when $x = X$ and $y = Y$, show that $X = Y$.

11. Prove that $\int_{a}^{b} f_{1}(x)f_{2}(x) dx \leq \sqrt{\int_{a}^{b} [f_{1}(x)]^{2} dx} \sqrt{\int_{a}^{b} [f_{2}(x)]^{2} dx}$ (Hint: Consider $\int_{a}^{b} [f_{1}(x) - tf_{2}(x)]^{2} dx \geq 0$) 12. Prove that $2e^{\frac{1}{4}} \leq \int_{0}^{2} e^{x^{2}-x} dx \leq 2e^{2}$. **13.** The functions $F: R \rightarrow R$ and $G: R \rightarrow R$ are defined by

$$F(\alpha) = \int_{-1}^{1} \frac{\sin \alpha}{x^2 + 2x \cos \alpha + 1} dx, \quad G(\alpha) = \int_{0}^{1} \frac{\sin \alpha}{x^2 + 2x \cos \alpha + 1} dx$$

- (a) Show that $F(n\pi)$ and $G(n\pi)$ are zero for any integer n, that both F and G are periodic and that both F and G are odd functions.
- (**b**) Show that $F(\alpha) = \tan^{-1}\left(\cot\frac{\alpha}{2}\right) + \tan^{-1}\left(\tan\frac{\alpha}{2}\right)$ and deduce the values of $F(\alpha)$ for $0 < \alpha < \pi$ and $-\pi < \alpha < 0$.
- (c) Show that $G(\alpha) = \tan^{-1}\left(\cot\frac{\alpha}{2}\right) \tan^{-1}(\cot\alpha)$ and deduce the values of $G(\alpha)$ for $0 < \alpha < \pi$ and $-\pi < \alpha < 0$.
- (d) Sketch on separate diagrams the graphs of $F(\alpha)$ and $G(\alpha)$ for $-2\pi \le \alpha \le 3\pi$.
- 14. Define $\ln x^n = \int_1^{x^n} \frac{dt}{t}$, for x > 0, use the substitution $t = u^n$ to prove that $\ln x^n = n \ln x$.

By considering the area under the graph of $y = \frac{1}{t}$ from t = 1 to t = 1 + x, or otherwise, show that,

for
$$x > 0$$
, $\frac{x}{1+x} < \ln(1+x) < x$ and deduce that, as x decreases to zero, $\frac{1}{x} \ln(1+x)$ tends to 1.

A periodic function is defined by $\begin{cases} f(x) = \frac{1}{x} ln(1+x) & , \text{for } 0 < x \leq 1 \\ f(x+1) = f(x) & , \text{ for all } x \end{cases}.$

Sketch the graph y = f(x) for values of x from -2 to 2.

- 15. (a) With the aid of a sketch of $y = \frac{1}{x}$, or otherwise, explain why $\frac{1}{r} < \int_{r-1}^{r} \frac{dx}{x} < \frac{1}{r-1}$ and $\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} < \int_{1}^{n} \frac{dx}{x} < 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1}$ where $r, n \in \mathbb{N} \setminus \{1\}$.
 - (b) Deduce from (a) that $0 < \ln \frac{r}{r-1} \frac{1}{r} < \frac{1}{r-1} \frac{1}{r}$ and hence, or otherwise, show that

$$0 < \ln 2 - \sum_{r=n+1}^{2n} \frac{1}{r} < \frac{1}{2n}$$

(c) If
$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = a_n$$
, show that $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2n-1} - \frac{1}{2n} = a_{2n} - a_n = \sum_{r=n+1}^{2n} \frac{1}{r}$

and deduce that the series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$ converges to $\ln 2$.

- **16.** (a) Show that, for all t > 0, x > 0, the gradient of the graph of $y = \frac{1}{x^t}$ is negative and increases steadily
 - as x increases. Use sketches showing appropriate points of this graph to illustrate the inequalities.

(1)
$$\int_{r}^{r+1} \frac{1}{x^{t}} dx < \frac{1}{2} \left[\frac{1}{r^{t}} + \frac{1}{(r+1)^{t}} \right]$$
 and (2) $\int_{r-\frac{1}{2}}^{r+\frac{1}{2}} \frac{1}{x^{t}} dx > \frac{1}{r^{t}}$ which hold for $t > 0, r \ge 1$.

(**b**) For all t > 0, $G_n(t)$ is defined by $G_n(t) = 1 + \frac{1}{2^t} + \frac{1}{3^t} + \dots + \frac{1}{n^t} - \int_1^n \frac{1}{x^t} dx$.

By taking each of the inequalities (1), (2) for suitable integer values of r and combining them, deduce that, for all t > 0, $\frac{1}{2} + \frac{1}{2n^t} < G_n(t) < \int_{1/2}^1 \frac{1}{x^t} dx + \int_n^{n+\frac{1}{2}} \frac{1}{x^t} dx$.

(c) Write down the value of
$$\int_{1/2}^{1} \frac{1}{x^t} dx$$
 if $t \neq 1$ and explain why $\int_{n}^{n+\frac{1}{2}} \frac{1}{x^t} dx < \frac{1}{2n^t}$ if $t > 0$.

(d) Deduce that, if
$$t > 0$$
, $t \neq 1$, $\frac{1}{2} \le \lim_{n \to \infty} G_n(t) \le \left\lfloor \frac{1}{1-t} \left(1 - \frac{1}{2^{1-t}} \right) \right\rfloor$ and hence find the value of $\lim_{t \to 0^+} \left[\lim_{n \to \infty} G_n(t) \right]$. Using the definition of $G_n(t)$ or otherwise show that $\lim_{n \to \infty} \left[\lim_{t \to 0^+} G_n(t) \right]$ also exists but has a different value from the previous double limit.

17. Suppose f is a twice differentiable function with f''(x) < 0 for all x > 0. Show that if 0 < a < b then $f(\lambda a + (1 - \lambda)b) \ge \lambda f(a) + (1 - \lambda) f(b)$ for all $1 \ge \lambda \ge 0$. By induction or otherwise deduce that if $a_1, a_2, ..., a_n > 0$ then $f\left(\frac{1}{n}\sum_{i=1}^n a_i\right) \ge \frac{1}{n}\sum_{i=1}^n f(a_i)$.

Setting $f(x) = \ln x$ deduce that $\frac{1}{n} \sum_{i=1}^{n} a_i \ge \left(\prod_{i=1}^{n} a_i\right)^{1/n}$.

(Hint: Consider $g(\lambda) = f(\lambda a + (1 - \lambda)b) - \lambda f(a) - (1 - \lambda) f(b)$ as a function of λ .)

18. (a) Prove that if
$$f(x) = x - \frac{1}{3} \left(8 \sin \frac{x}{2} - \sin x \right)$$
,

then $f'(x) = k \sin^4 \frac{x}{4}$, where k is a constant.

- (**b**) Hence show that if x > 0, $\frac{32}{15} \sin^5 \frac{x}{4} < f(x) < \frac{32}{15} \left(\frac{x}{4}\right)^5$.
- (c) Evaluate $f\left(\frac{\pi}{6}\right)$ in surd form, and use (b) to prove that $4(\sqrt{6} \sqrt{2}) 1$ is an approximation of π .

19. If n is a positive integer and x is a positive variable, show by differentiation that $\frac{(n+1+x)^{n+1}}{(n+x)^n}$ is an

increasing function of x. Hence deduce that $\left(1+\frac{x}{n}\right)^n < \left(1+\frac{x}{n+1}\right)^{n+1}$.

If n is a positive integer and x is a positive variable smaller than n, determine which of the two expressions $\left(1-\frac{x}{n}\right)^n$ and $\left(1-\frac{x}{n+1}\right)^{n+1}$ is greater.

20. In the following we shall denote the n-th derivative $\frac{d^n f}{dx^n}$ of a function f by $f^{(n)}$ and define $f^{(0)} = f$.

(a) Prove that
$$(f \times g)^{(1)} = f^{(0)} \times g^{(1)} + f^{(1)} \times g^{(0)}$$

- (b) Prove that $(f \times g)^{(n)} = \sum_{r=0}^{n} C_{r}^{n} f^{(r)} g^{(n-r)}$, for any positive integer n, where $C_{r}^{n} = \frac{n(n-1)...(n-r+1)}{r(r-1)...2.1}$, $C_{0}^{n} = 1$.
- (c) Show that if y = f(x) satisfies the equation $(x^2 + 1)\frac{d^2y}{dx^2} + x\frac{dy}{dx} m^2y = 0$, where m is a positive integer, then $(x^2 + 1)y^{(n+2)} + (2n+1)xy^{(n+1)} + (n^2 m^2)y^{(n)} = 0$, for any positive integer n.

(d) Hence show that if $g(x) = f^{(m+1)}(x)$, then $\frac{g'(x)}{g(x)} = -\frac{(2m+1)x}{x^2+1}$ and consequently

$$g(\mathbf{x}) = \frac{C}{\left(\mathbf{x}^2 + 1\right)^{(2m+1)/2}} \quad \text{for some constant} \quad C \ .$$

21. Let
$$I_n = \int \frac{d\theta}{(2 + \cos \theta)^n}$$
, where n is any non-negative integer.

- (a) Express $\int \frac{\cos \theta d\theta}{(2 + \cos \theta)^n}$ in terms of In and In-1, for any n > 0.
- **(b)** Express $\int \frac{\cos^2 \theta d\theta}{(2 + \cos \theta)^n}$ in terms of In, In-1, and In-2, for any n > 1.
- (c) By using the results of (a) and (b), prove that, for any n > 1,

$$I_{n} = \frac{1}{3(n-1)} \left[-\frac{\sin\theta}{(2+\cos\theta)^{n-1}} - (n-2)I_{n-2} + 2(2n-3)I_{n-1} \right]$$

(d) Hence evaluate $\int_{0}^{2\pi/3} \frac{d\theta}{(2+\cos\theta)^2}$

- 22. If f satisfies the functional equation $f(xy) = f(x) + f(y) \dots (1)$ for all x, y in its domain. Show that if f is a solution of (1) and if f is differentiable at each $x \neq 0$, then $f'(x) = \frac{f'(1)}{x}$, for each $x \neq 0$.
- **23.** For any real numbers $\alpha < \beta$, we denote

 $(\alpha,\,\beta)=\{\,\,x:x\,\in\,\mathbb{R}\quad\text{and}\quad\alpha< x<\beta\,\,\}\quad,\quad(\alpha,\,\infty)=\{\,\,x:x\,\in\,\mathbb{R}\,\,\text{and}\quad x>\alpha\,\,\}$

(a) Define a function h(x) on $(1, \infty)$ by $h(x) = \frac{x}{\ln x}$.

- (i) Show that h(x) has a local minimum at x = e,
- (ii) Explain why $h(x) \ge e$ for all $x \in (1, \infty)$.

(b) Let
$$b > 1$$
. Show that the function $f(x) = \frac{x^{b}}{b^{x}}$, defined for $x > 1$ is increasing on $\left(1, \frac{b}{\ln b}\right)$
and decreasing on $\left(\frac{b}{\ln b}, \infty\right)$.

(c) Using (a) and (b), deduce that if 1 < a < b < e, then $a^b < b^a$.

24. (a) (i) For any $x \ge 0$, show that $(1+x)^n > \frac{n(n-1)}{2}x^2$ for any positive integer n.

By putting $x = \sqrt[n]{n-1}$ in the above inequality, or otherwise, show that $\lim_{n \to \infty} \sqrt[n]{n-1}$.

(ii) Evaluate the expression
$$\lim_{n \to \infty} \sqrt[n]{\frac{n^3 + n + 1}{n^5 + 1}} = 1$$
.

(b) Find the absolute maximum of the function $f(x) = x^{1/x}$ on $[1, \infty)$. Hence, or otherwise, find the greatest value among the sequence $\{\sqrt[n]{n}\}$, n = 1, 2, ... (It is known that 2 < e < 3)

25. If $y = \sin^{-1}x + (\sin^{-1}x)^2$, prove that $(1 - x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx}$ is independent of x and deduce that, for n > 1,

$$(1-x^{2})\frac{d^{n+2}y}{dx^{n+2}} - x(2n+1)\frac{d^{n+1}y}{dx^{n+1}} - n^{2}\frac{d^{n}y}{dx^{n}} = 0$$

Show that the value $\frac{d^{2r+1}y}{dx^{2r+1}}$ when x = 0 is $\frac{1}{2^{2r}} \left\{ \frac{(2r)!}{r!} \right\}^2$